CLOCK_GETRES(2) | Руководство программиста Linux | CLOCK_GETRES(2) |
clock_getres, clock_gettime, clock_settime - функции часов и времени
#include <time.h>
int clock_getres(clockid_t clk_id, struct timespec *res);
int clock_gettime(clockid_t clk_id, struct timespec *tp);
int clock_settime(clockid_t clk_id, const struct timespec *tp);
Компонуется при указании параметра -lrt (только для glibc до версии 2.17).
Требования макроса тестирования свойств для glibc (см. feature_test_macros(7)):
clock_getres(), clock_gettime(), clock_settime():
Функция clock_getres() определяет разрешающую способность (точность) заданных в clk_id часов, и, если res не равно NULL, сохраняет её в struct timespec, указанную в res. Точность часов зависит от реализации и не может быть настроена определённым процессом. Если значение времени, указанное в аргументе tp функции clock_settime(), не кратно res, то оно усекается до кратного res.
Функции clock_gettime() и clock_settime() получают и устанавливают время указанных часов clk_id.
Аргументы res и tp представляют структуру timespec, определённую в <time.h>:
struct timespec { time_t tv_sec; /* секунды */ long tv_nsec; /* наносекунды */ };
Аргумент clk_id представляет идентификатор определённых часов, над которыми производится действие. Часы могут использоваться системой в целом и поэтому видимы всем процессам или конкретного процессу, если они отсчитывают время только в пределах одного процесса.
Все реализации поддерживают системные часы реального времени, которые имеют идентификатор CLOCK_REALTIME. Их время представляется в секундах и наносекундах с начала Эпохи. Когда их время изменяется, на таймеры с относительными интервалами это никак не влияет, но таймеры с абсолютной точкой во времени учитывают это.
Может быть реализовано много часов. Представление соответствующих значений времени и влияние на таймеры не определено.
В последних версиях glibc и ядра Linux поддерживаются следующие часы:
При успешном выполнении функции clock_gettime(), clock_settime() и clock_getres() возвращают 0, или -1 в случае ошибки (errno устанавливается в соответствующее значение).
Данные системные вызовы впервые появились в Linux 2.6.
Описание терминов данного раздела смотрите в attributes(7).
Интерфейс | Атрибут | Значение |
clock_getres(), clock_gettime(), clock_settime() | Безвредность в нитях | MT-Safe |
POSIX.1-2001, POSIX.1-2008, SUSv2.
На POSIX-системах, в которых доступны эти функции, символ _POSIX_TIMERS, определённый в <unistd.h>, имеет значение больше 0. Символами _POSIX_MONOTONIC_CLOCK, _POSIX_CPUTIME, _POSIX_THREAD_CPUTIME показывается, что доступны CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID. (см. также sysconf(3).)
В POSIX.1 определено следующее:
Установка значения часов CLOCK_REALTIME с помощью clock_settime() не оказывает влияния на нити, которые находятся в состоянии простоя из-за служб, работа которых основана на этих часах, включая функцию nanosleep(); также, это не оказывает влияние на относительные таймеры, основывающиеся на этих часах. В результате, интервал данных служб истечёт, когда истечёт запрошенный относительный интервал, независимо от нового или старого значения часов.
На некоторых архитектурах реализация clock_gettime() находится в vdso(7).
До того, как в Linux была добавлена поддержка CLOCK_PROCESS_CPUTIME_ID и CLOCK_THREAD_CPUTIME_ID, реализация этих часов в glibc на многих платформах использовала регистры таймеры ЦП (TSC на i386, AR.ITC на Itanium). Эти регистры могут отличаться у разных ЦП и, как следствие, эти часы могут возвращать поддельные результаты, если выполнение процесса переходит на другой ЦП.
Если процессоры в многопроцессорных системах используют разные источники времени, то нет способа поддерживать сверку между регистрами таймера, так как каждый ЦП будет работать со слегка отличающейся частотой. В этом случае clock_getcpuclockid(0) вернёт ENOENT, чтобы указать на это состояние. Двое часов в этом случае будут полезны, только если можно убедиться, что процесс остался на определённом ЦП.
Процессоры в многопроцессорных системах не приступают к работе одновременно и поэтому регистры таймера обычно работают со смещением. Некоторые архитектуры содержат код, который пытается сократить это смещение при загрузке системы. Однако код не может гарантировать точную подстройку смещений. В glibc нет средств для работы с этими смещениями (в отличие от ядра Linux). Обычно, эти смещения малы и поэтому, в большинстве случаев, их влияние незначительно.
Начиная с glibc 2.4, обёрточные функции системных вызовов, описанных на этой странице, не имеют таких проблем, так как используют ядерную реализацию CLOCK_PROCESS_CPUTIME_ID и CLOCK_THREAD_CPUTIME_ID (в системах, которые её предоставляют, то есть Linux 2.6.12 и новее).
Согласно POSIX.1-2001, процесс с «соответствующими правами» может настроить часы CLOCK_PROCESS_CPUTIME_ID и CLOCK_THREAD_CPUTIME_ID с помощью clock_settime(). В Linux эти часы не допускают настройку (т. е., процесс не может иметь «соответствующие права»).
date(1), gettimeofday(2), settimeofday(2), time(2), adjtime(3), clock_getcpuclockid(3), ctime(3), ftime(3), pthread_getcpuclockid(3), sysconf(3), time(7), vdso(7), hwclock(8)
2019-03-06 |